Valorization of Phosphorus Secondary Raw Materials by Acidithiobacillus ferrooxidans.
نویسندگان
چکیده
This paper presents the possibility of producing phosphorus fertilizers through Acidithiobacillus ferrooxidans utilization in secondary raw materials solubilization. Phosphorus was obtained from the bones of poultry and fish as well as from Morocco phosphorite. Four doses of poultry bones and fish bones were used in the experiment (2, 4, 10 and 20 g/L) and two doses (2 and 4 g/L) of phosphorite were also used. The experimenters measured the final pH, which increased in proportion to the increase in the number of poultry bone doses, whereas in the case of fish bones it decreased in proportion to the increase in the number of fish bone doses. Only in the case of phosphorite, where 10 g/L were used, there was a slight increase in pH during solubilization observed. The highest phosphorus concentration of 1.9% (expressed as P₂O₅) was found for the solubilization performed on fish bones with the highest dose (20 g/L). The formulation obtained in this study meets the necessary requirements for use as a bio-fertilizer because of the relatively low content of P₂O₅ and the low content of toxic elements. The results confirm the utilization of Acidithiobacillus ferrooxidans in the biosolubilization of phosphorus renewable raw materials that can alleviate the problem of the world's depleting phosphorite deposits.
منابع مشابه
An Investigation the Effect of Acidithiobacillus Ferrooxidans Bacteria on Biomachining of Titanium Alloy and Copper
Recent advances in technology have increased the necessity of using components with Micro and Nano dimensions. In recent years, the use of bacteria as a renewable tool has hopeful applications in producing different work-pieces. In this study, the effect of Acidithiobacillus Ferrooxidans (A.F) on Vt20 (Titanium alloy) and Cu were investigated. The results illustrated that in the medium of the A...
متن کاملThe chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.
The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (P(i)), which is an essential component for all living cells. Although the primary source of phosphorus for micr...
متن کاملXRF analysis of coal bioleaching by chemolithoheterotrophic Alicyclobacillus HRM5 and chemolithoautotrophic Acidithiobacillus ferrooxidans
Most studies on sulfur bioleaching from coal depend on an autotrophic microorganism with a low growth and a long leaching time. For this reason, heterotrophic heat and acidic pH-resistant Alicyclobacillus was used as the growing and resting cells for the sulfur and iron removal from coal. The results obtained were analyzed by XRF. The data showed that 26.71% of sulfur was removed by Alicyclobac...
متن کاملA study of Acidithiobacillus ferrooxidans DSMZ 583 Adaptation to Heavy Metals
In this study the ability of Acidithiobacillus ferrooxidans, with regard to the biorecovery of heavy metals inshake flask has been investigated. Adaptation experiments with the single metal ions Ni, Co, V, Mo, W anda mixture of the first four metal ions in the medium was developed through serial sub-culturing. Adaptationshowed that A. ferrooxidans could tolerate up to 2.3 g/l ...
متن کاملBioleaching and Kinetic Investigation of WPCBs by A. Ferrooxidans, A. Thiooxidans and their Mixtures
Bioleaching was used to mobilize Cu, Zn and Ni from waste printed circuit boards (WPCBs) and eliminate hazardous metal species from these wastes. Pulp density (PD) and medium culture are two effective factors which have been optimized in this paper. The bacteria Acidithiobacillus ferrooxidans (A. ferrooxidans) and Acidithiobacillus thiooxidans (A. thiooxidans) and their mixture were grown and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2017